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Use of Cordon Wire Tension for Static and  
Dynamic Prediction of Grapevine Yield
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Abstract:  An automated system was used during three growing seasons to monitor the change in tension (ΔT) 
in the load-bearing wire of a trellis to estimate yield in vineyards. Actual yield varied nearly four-fold among the 
three study years, but in each year the fruit was uniformly distributed along the length of the wire. The automated 
sensor detected sequential harvests up to ~12 m to either side of the sensor, or 24 m total wire length, in a nonlinear 
fashion. Yield was predicted statically from ΔT at the lag phase (L) of berry growth (ΔTL) and dynamically from 
continuous output of ΔT. Relationships between ∆TL and yield were linear. Estimated yield was not sensitive to the 
date of ∆TL, within 10 days. In using the ratio between the current year ΔT and that of a specific previous year, the 
differences between estimated and observed yields depended upon the choice of predictor year(s), where years with 
similar ΔT were the most accurate. Across an estimation interval of L to harvest, the precision of dynamic estimates 
was determined by the similarity in the day-to-day shapes of the double-logistic curves of ΔT over time. Due to a 
catastrophic frost in the second year of the study, an extremely small crop and an uncharacteristic growth curve 
made it difficult to predict yield either statically or dynamically. In practice, the method requires a grower to col-
lect multiple years of growth curves from which to build a robust linear relationship between ΔTL and yield (static 
estimates), or to apply an average of multiple years’ ΔT values dynamically.
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Limitations associated with traditional or heuristic ap-
proaches to yield estimation in vineyards prompted develop-
ment of an automated system to provide a remote, dynamic 
indicator of fruit growth during each growing season (Tarara 
et al. 2004, 2005). Despite proposals for using remote imag-
ing in vineyards and orchards (e.g., Ye et al. 2008, Nuske 
et al. 2011, Férnandez et al. 2013), the standard means of 
estimating yield at the vineyard level relies on periodic (once 
to several times per season) manual sampling that involves 
counting and/or weighing fruit clusters and/or berries. The 
critical estimate is made at the lag phase (L) in berry growth, 
a period of variable duration (Coombe 1976) in which there 
is little increase in mass or volume of the fruit. Lag phase 
can be difficult to determine accurately by visual scouting. 

Approaches for computing yield estimates at L are de-
scribed in the scientific and grey literature (e.g., Antcliff et 

al. 1972, Wolpert and Vilas 1992, Clingeleffer et al. 2001, 
Dunn 2010). Generally, a company-specific and/or cultivar-
specific value is used to scale numbers of fruit clusters per 
vine and/or an average cluster mass to estimate values at har-
vest (Price and Lombard 1988, Wolfe 2006). Some producers 
do not disclose computational details for proprietary reasons. 
Unquantified subjective inputs may be used to modify unex-
pectedly large or small predictions. In those cases, adjusted 
estimates often are biased toward the long-term average. Ef-
ficient schemes have been developed to adequately sample 
and estimate the number of clusters per vine (Jones 1990, 
Wolpert and Vilas 1992, Wulfsohn et al. 2012), but mass at 
harvest is more difficult to predict. Self-reporting in the Unit-
ed States suggests an industry-wide bulk accuracy of ±10%, 
although this may range up to 20% or more in some years (N. 
Dokoozlian, author’s unpublished data, 2013). The difficulty 
of obtaining accurate yield estimates is not unique to grapes 
(e.g., macadamia [Macadamia integrifolia], Mayer et al. 2006; 
satsuma mandarin [Citrus unshiu Marc.], Ye et al. 2008). 

Yield estimates by site are subject to larger variation (e.g., 
~20 to 100% errors; Blom and Tarara 2009, Clingeleffer et al. 
2001) than are collective or regional values. Temporal trends 
in yields for various crops have been investigated with weath-
er-based models (Lobell and Field 2011), but these models 
emphasize aggregate outcomes: for example, by county. Ac-
curate estimation by vineyard is critical economically, as it 
is essential for crop price negotiation, harvest logistics, batch 
processing, and marketing decisions related to specific culti-
vars and quality tier of the finished juice or wine. 

The trellis tension monitor (TTM) could be a replacement 
for, or adjunct to, traditional yield estimation techniques 
(Tarara et al. 2004, Blom and Tarara 2009). Briefly, the TTM 
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continuously detects tension (T) in a load-bearing trellis wire 
using a temperature-compensated load cell. Over a single 
growing season, the resulting output is a double sigmoid 
curve that represents the annual growth of shoots and fruit, 
expressed as the change in T (ΔT) from initial conditions at 
bud break (T0). Before fruit set, the increase in mass reflects 
shoot growth; thereafter, fruit mass is a progressively higher 
proportion of fresh mass. For example, within three weeks of 
estimated fruit set, fruit mass represented up to 57% of the 
total fresh mass from the current season’s growth (Tarara et 
al. 2013). Under deficit irrigation, shoot growth is deliberately 
controlled after fruit set. 

In a common case in winegrapes (i.e., multi-wire trellis, 
deficit irrigation), the following objectives were investigat-
ed: 1) determine the apparent spatial sensitivity, or detection 
bounds, of the TTM sensor; 2) use ΔT at L to predict ΔT 
immediately before harvest (ΔTH) and consequently, predict 
yield with a regression approach (static estimation); 3) use one 
or two previous years’ ratios of ΔT-to-yield to estimate yield 
in the current year (ratio method); and 4) estimate yield on a 
daily basis from L onward, also using previous years’ ratios 
of ΔT-to-yield (dynamic estimation). 

Materials and Methods
Site description. Data were collected over three years 

(2007 to 2009) in two commercial vineyards near Waterford, 
CA (37.66° N; 120.83° W; 41 m asl). Climate descriptors and 
soil classifications at the site were described previously (Tarara 
et al. 2013). Both vineyards were planted in 1994 with 3.05 
m between rows and 2.44 m between vines for an average 
plant density of 1345 vines/ha. Experimental rows were on 
average 420 m long (vineyard 1) and 250 m long (vineyard 2). 
Vineyard 1 was planted to Vitis vinifera L. cv. Merlot (22.32 
ha) and vineyard 2 to V. vinifera cv. Chardonnay (30.68 ha). 
In both cultivars, vines were trained to a unilateral cordon at 
~1.1 m aboveground. Vines were dormant-pruned annually to 
two-bud spurs spaced 15 to 20 cm apart. The trellis included a 
single cordon wire (galvanized, commercial Class 3; 2.30 mm 
diam; 11 AWG [American Wire Gauge]), hereafter referred to 
either as the cordon wire or the load-bearing trellis wire. At 
every vine trunk, there was one steel stake (t-post) to which 
the cordon wire was fixed by a wire loop the same diameter 
as the trellis wire. End posts were circular steel pipe (10 cm 
diam). Shoots were trained in a loose vertical arrangement 
with a central catch wire 25 cm above the cordon wire and two 
foliage wires at 56 cm above the cordon wire, spaced 43 cm 
apart by a horizontal steel cross member with guide notches 
but no other restrictions on the wire. 

Vines were managed under regulated deficit irrigation de-
livered by drip from fruit set to near harvest. All cultural 
practices, including pest and disease interventions, were per-
formed according to commercial standards in the area. Spe-
cific practices that caused minor consequences for the mass 
borne by the trellis wire were described previously (Tarara et 
al. 2013). Of critical note is that in 2008, a late spring freeze 
defoliated the vines overnight on days of year (DOY) 111 to 
112 (20 to 21 Apr) with two primary consequences: (1) annual 

growth was reset by 4 to 6 weeks, causing a compressed grow-
ing period and atypical growth curve and (2) substantially less 
fruit was produced from the secondary buds. The onset of L 
was defined by our cooperator as the date at which one half 
of sampled berries were soft to the touch, with the remainder 
hard and green. The onset of ripening was defined as the date 
at which at least one half of a sample of berries from sentinel 
vines exhibited softening to the touch and color change. 

Instrumentation and data processing. In each vineyard 
in 2007, one TTM system was installed per row in three con-
secutive rows. The arrangement was replicated in another 
section of each vineyard for a total of 12 TTMs in the ex-
periment. The load cells were installed in-line with the trellis 
wire in the central portion of the rows, so that sensing was bi-
directional. Equipment details and the method of initial post-
processing of the data have been described elsewhere (Blom 
and Tarara 2009, Tarara et al. 2004, Tarara et al. 2013). Data 
were recorded continuously from installation in 2007 through 
dormant pruning in 2010. Initial conditions (T0) were set each 
year for each TTM as the day before T began to increase after 
bud break. The ∆T was plotted in daily time intervals (∆Td). 
Use of ∆T rather than T normalized the data among years and 
adjusted for the variation in T0 among rows. Double logistic 
functions were fitted to the observed ∆Td (Hau et al. 1993) 
with the parameters adjusted as described by Tarara et al. 
(2013) (Figure 1).

Immediately before the vineyard was harvested by ma-
chine, experimental vines (five vines in the same row as, 
and to either side of the instruments: n = 10 vines per TTM) 
were harvested by hand, the fruit was weighed, and clusters 
were counted. During hand harvest, signals from the TTM 
were scanned every 1 sec and averaged every 1 min to ensure 
identification of the drop in ∆T that resulted from stepwise 
removal of fruit mass from the trellis wire. Vines were har-
vested sequentially in pairs opposite the sensor beginning 
with the vine position nearest the sensor. The load removed 
for each length of trellis wire that was encompassed by the 
vine pair was expressed as kg fruit. Measured, or actual yield 
(Ya; kg), for each TTM was defined as the total mass of fruit 
harvested from 10 vines.

The sensitivity (s) of the TTM to the removal of a distrib-
uted mass, or load on the wire, was estimated from the dif-
ference between ∆T immediately prior to fruit picking (∆TH) 
and the subsequent remainder (∆TR). Each remainder (∆TR,1, 
∆TR,2, and so on) also was expressed as a percent of the total 
difference (∆TH - ∆TR) due to the harvest of the five pairs of 
vines. The trend of (∆TH - ∆TR) is nonlinear and is represented 
by an exponential function

Eq. 1

where ( ) is the estimation of ΔTH, (∆TH - ∆TR) is the aver-
age decrement after harvest, and w is the total length of trellis 
wire represented by the specified vine pair on either side of 
the TTM sensor. Wire lengths were reported as vine spacing 
maxima; in other words, 4.88 m represents the total length 
of wire encompassing the first vine pair harvested, 9.76 m 
represents the total length encompassing the second vine pair 
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harvested, and so on, up to 24.4 m for the total length of wire 
represented by 10 vines.

From the logistic curves, a ∆TL was used that had been re-
solved analytically (Tarara et al. 2013) to make static predic-
tions of ∆TH, and thus Ye through a simple linear relationship:

Eq. 2a

 or: Eq. 2b

where ax is the intercept and bx the slope of the relationship. 
The sensitivity of the yield prediction to the analytically de-
termined date of L was determined in time intervals of one 
day, from L to L + 10 d. The fitted double logistic curves of 
∆Td were used as independent variables to estimate yield in 
daily time steps (d), computed with the function

Eq. 3

where the subscript c refers to the current year and the sub-
script i refers to other year(s) with known yield. For making 

a point estimate at L, Equation 3 is referred to as the ratio 
method. Moving or dynamic estimates at daily intervals from 
fruit set to harvest and L to harvest also were computed using 
Equation 3. Yield for the current year was predicted both from 
a single comparison year and from the mean of the other two 
years in the dataset. 

Statistical analyses. An analysis of variance for the sensi-
tivity of ∆TH to removal of the distributed load was computed 
with a general linear model procedure (SAS ver. 9.3; SAS 
Institute, Cary, NC). Input data for ∆TH were derived from 
the double-sigmoid curves derived from the original TTM 
signals. Dependent variables were the harvest-induced drop 
in ∆T (∆TH-∆TR), ∆TR, and fruit mass removed. Year, vine-
yard, and length of trellis wire were the sources of variation 
analyzed as single factors and for interactions among factors. 
Residuals were evaluated for the normality assumption with 
the Shapiro−Wilk test. The Bonferroni test was used to detect 
significant differences among single factors. The ∆TH-∆TR 
and ∆TR by wire length were modeled with exponential curves 
that were adjusted using a nonlinear regression procedure 
with Gauss Newton optimization (SAS ver. 9.3). Simple linear 
regressions were fitted to estimate functional relationships 
between ∆TL and ∆TH, and ∆TL and Y. 

Total harvested mass from the ten experimental vines per 
row (Ya) was compared with Ye. The bias, variance (var), and 
root mean square error (RMSE) for the mean yield estimate 
in a period between fruit set and harvest, or between L and 
harvest were calculated, where

Eq. 4

For the dynamic estimates, Yd,c was analyzed by year and 
vineyard.

Results
The ∆TH-∆TR differed by year (p < 0.001) and length of 

wire (p < 0.001), but not by vineyard. Among years, the dif-
ference in the relationship between ∆TH-∆TR and wire length 
was a consequence of the sensitivity of the TTM to pre-har-
vest initial conditions (e.g., 262 [2008] vs. 480 mV [2009] in 
vineyard 1) and the magnitude of the fruit mass removed. 
There were no significant interaction terms between vineyard 
and either year or length of wire. Thus, for further analysis 
of the apparent spatial sensitivity of the TTM, data from the 
two vineyards were pooled. 

There was no interaction between fruit mass per vine and 
length of trellis wire, indicating an exceptionally uniform load 
distribution for a biological system: approximately the same 
mass was removed from each vine pair (Table 1). Beyond 19.52 
m total length of wire, or the fourth vine pair, removing fruit 
mass did not significantly increase ∆TH-∆TR, implying that 
the TTM in a trellis system such as this may detect significant 
changes in mass up to ~10 m on either side of the sensor. At 
our plant density, one could suggest using four vines to either 
side of the sensor to estimate yield. However, to provide a 
maximum sample size for Ya, the total fruit mass for all 10 ex-
perimental vines per row was used (24.4 m total wire length). 

Figure 1  Double logistic curves fitted to the average change in tension in 
daily time steps (∆Td) in the main load-bearing trellis wire. (A) vineyard 1 
and (B) vineyard 2. Vineyard 1 (cv. Merlot) was harvested 30 to 50 days 
after vineyard 2 (cv. Chardonnay). The estimated dates of fruit set were 
days of year 142 (2007) and 156 (2008; vineyard 1), and days of year 
135 (2007), 156 (2008), and 144 (2009; vineyard 2). The date of fruit 
set was not estimated for vineyard 1 in 2009 (from Tarara et al. 2013).
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Yield varied considerably by year in the order 2009 > 2007 
>> 2008. Over three years, vineyard 2 produced less total 
fruit mass (p = 0.002) than vineyard 1. This outcome was 
driven by an inter vineyard difference in 2008, when vineyard 
2 produced only 60% of the fruit mass of vineyard 1. In con-
trast, in 2007 and 2009, total fruit mass in vineyard 2 was 96 
to 97% that of vineyard 1 (data not shown). The response of 
∆T to sequential load removal was nonlinear and dependent 
upon year (Figure 2), with the greatest sensitivity to the vine 
pair or load nearest the sensor (Table 1).

The relationship between ∆TL and ∆TH was linear for the 
pooled data (p < 0.001; Figure 3A). Vineyard-specific mod-
els also were linear and were significantly different from 
zero (Figure 3B,C; p < 0.001). There was low relative vari-
ability in the models (CV = 7.8%, vineyard 1; CV = 5.8%, 
vineyard 2). This initial step demonstrated that in any given 
year, it is possible to predict preharvest ΔT, both collectively 
and, more importantly, at the vineyard level, from a small 
number of years with substantially different input values. 
As with ΔTH, the 10-vine yield over three years was also a 
linear function of ∆TL (Figure 4). This held for both pooled 
and vineyard-specific inputs, indicating the possibility of 
developing the vineyard-specific yield estimates that are 
important for harvest logistics. In effect, ∆TL was used as 
a surrogate for average mass per cluster or number of clus-
ters per vine as growers would use at L. Equations with-
out intercepts (Figure 5) were also fitted because growers 
seek a single scalar when estimating yield. In these cases, 
the slopes of the relationships had a smaller range between 
pooled and vineyard-specific data, suggesting the possibility 
of a unified model to be applied initially in subsequent years 

until an adequate database could be developed for specific 
cultivars and sites. Note that the calculation of the sums of 
squares differs from that of a model that includes an inter-
cept, resulting in higher coefficients of determination (R2) in 
the zero-intercept model. However, model fits (RMSE) were 
not as good as those that included intercepts. Although the 
no-intercept equations may be more practical, ΔTL is never 
zero. The regression approach using ΔTL may be the most 
straightforward application of TTM data and require the 
fewest years to determine a relationship with outcomes that 
are acceptable to the industry. Using vineyard-specific rela-
tionships that included intercepts, yield was underestimated 
in 2007 (7.9%, vineyard 1; 11.4%, vineyard 2). Yield was 
overestimated in 2008 (11.4%, vineyard 1; 27.8%, vineyard 
2). In 2009, yield was slightly overestimated (1.5%, vineyard 
1; 2.4%, vineyard 2). 

Considered by vine pair, or distance from the sensor, the 
relationships between ΔTL and yield were linear. Relative er-
rors in the estimated yield were similar to one another by dis-
tance (Table 2). The slopes of the relationships were highest 
for the 10-vine set, supporting the notion that it is desirable 
to use the largest practical sample size within the detection 
bounds of the sensor.

An analytical solution for the onset of L was determined 
from the second derivative of the first logistic equation (Fig-
ure 1; Tarara et al. 2013). The sensitivity of Ye to the date 
of ∆TL was low; in other words, an identifiable L occurred 
where there was very little change in ∆Td. Consequently, Ye 
was consistent over the 10-day window. For each 1-day in-
crement from L to L+10, the change in Ye was 0.26 kg/vine 
(data not shown). 

Table 1  Sensitivity of trellis tension monitor (TTM) to stepwise removal of uniformly distributed load from the horizontal supporting wire 
(cordon wire) of a vineyard trellis. Fruit was harvested sequentially from five sets of vines paired on either side of the sensor; n = 12 TTMs.

Year/  
no. of vines

Maximum  
wire lengtha (m)

Cumulative ∆TH-∆TR,x
b  

(mV)
Fraction of total

∆TH-∆TR (%)
Avg fruit mass removed 

(kg /vine pair)c
Cumulative mass 

removed (kg)

2007
2 4.88 142 40.2 47.9 ± 4.45 47.9
4 9.76 214 20.4 49.4 ± 12.06 97.3
6 14.64 282 19.5 51.2 ± 3.42 148.5
8 19.52 330 13.5 50.2 ± 8.31 198.7

10 24.40 353 6.4 49.9 ± 10.10 248.6
2008

2 4.88 46 36.2 17.0 ± 4.97 17.0
4 9.76 82 27.9 16.4 ± 6.47 33.4
6 14.64 106 19.1 17.2 ± 6.68 50.6
8 19.52 118 9.3 15.4 ± 6.46 66.0

10 24.40 127 7.4 16.0 ± 5.48 82.0
2009

2 4.88 257 50.6 65.8 ± 7.63 65.8
4 9.76 373 22.9 63.0 ± 10.33 128.8
6 14.64 452 15.6 64.1 ± 9.77 192.9
8 19.52 484 6.5 61.0 ± 14.21 253.9

10 24.40 507 4.4 61.1 ± 12.92 315.0
aLength of trellis wire is expressed as the maximum distance as a function of vine spacing (2.44 m between vines).
b∆TH-∆TR,x is the normalized difference in wire tension (ΔT) between immediately before harvest (∆TH ) and that remaining after removal of fruit 
(∆TR,x) incrementally from pairs of vines to either side of the sensor, where x = 1 to 5.

cMean ± standard deviation.
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There was variability across TTMs, or vineyard rows, re-
sulting in both under- and overestimates of Ya. However, an 
analysis of the number of TTMs deployed within a vineyard 
is outside the scope of this study. Using specific predictor 
year(s) under Equation 3, but fixing the ratios at d = L, the 
difference between estimated (Ye) and observed Ya depended 
primarily on the choice of predictor year(s) (Table 3). For 
vineyard 1, the yield for 2007 was best estimated from the 
mean ∆TL of 2008 and 2009. This is important for selection 
of comparison years (∆Td) once one has collected a larger 
database of ΔT curves. For 2008, 2007 was a better estimator 
of Ya than was 2009. Despite the exceptionally small yield, 
errors in estimating yield in 2008 were <26%. In 2009, the 
mean of 2008 and 2007 was slightly more accurate than 2007 
alone. The best estimators in vineyard 2 differed little from 
those of vineyard 1: Ya of 2007 was best estimated by the ∆TL 
of 2009 alone. Yield in 2009 was best estimated from the ∆TL 
of 2007, the other large-crop year. However, Ya in 2008 was 
very poorly estimated because of the exceptionally low crop 
load (average 6.1 kg/vine) but similar ΔTc:ΔTi to vineyard 1. 
The reason for similar ΔTL between vineyards is unclear, but 
it may indicate a substantial contribution to ΔT of vegetation 
relative to the very low crop load of vineyard 2. 

Between fruit set and L, the precision, bias, and accuracy 
of dynamic predictions were highly variable in time and were 
excluded from further analysis (data not shown). The earliest 
reliable daily estimates from the dynamic approach may be 
L, because of interannual differences in the period during 
which there is measurable canopy growth coincident with 
early fruit growth. From L to harvest, there was temporal 
variation in the bias of daily estimates under specific predic-
tor years (Figure 6). This is due to the timing of the diver-
gence, or non-parallel behavior of the ΔTd curves between 
years (Figure 1). An abrupt drop or rise in bias marks the 
time of greatest difference in the change in slopes between 
the curves. The effect of the atypical logistic growth curve 

of 2008 is more evident in vineyard 1 (Figure 6A, C) than 
in vineyard 2 (Figure 6D, F). Between L and veraison, there 
were larger changes in the differences between slopes of 
the curves (2008 vs. 2007 or 2009) in vineyard 1 than in 
vineyard 2. More consistent over time were the daily Ye of 
2007 using 2009 as the estimator (Figure 6A, C) and Ye of 
2009 estimated from 2007 data (Figure D, F), the years with 
“normal” growth functions. In vineyard 1, the 2007 and 2009 
ΔTd curves were nearly identical beyond fruit set with the 

Figure 2  The drop in trellis wire tension at harvest (∆TH-∆TR) as a func-
tion of equivalent length of wire encompassing the trellis tension monitor. 
The uniformly distributed load was sequentially removed from the wire by 
harvesting equidistant vine pairs on opposite sides of the sensor.

Figure 3  The change in tension (ΔT) in the trellis wire immediately pre-
ceding harvest (∆TH), or the initial condition immediately before manual 
removal of load from the trellis wire, as estimated from ΔT at the lag phase 
of berry growth (∆TL) over three years. (A) pooled data; (B) vineyard 1; 
(C) vineyard 2. Grey lines are 95% prediction intervals and the outer black 
lines are 95% confidence intervals. All models were significantly different 
from zero (p < 0.0001).
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slopes diverging before L, thus providing early rather than 
late changes in both bias and accuracy. By 50 to 60 days 
before harvest, the bias and error in the estimates that did 
not include 2008 were fairly constant (Figure 6). In vineyard 
2, the slopes of ∆Td between 2007 and 2009 diverged around 
or soon after fruit set, after which the two curves were ap-
proximately parallel. Thus, by ~100 days before harvest, the 
bias and errors in the estimates that did not include 2008 were 
fairly constant, meaning that ∆Td,c,:∆Td,i (Equation 3), and thus 
Ye, were consistent over time. 

Mean values of the precision, bias, and accuracy of the 
dynamic estimates were calculated across an estimation pe-

riod of L to harvest (Equation 4; Table 4). Estimated yield 
reflected patterns that were observed in the point prediction 
at ∆TL (Equation 3)–in other words, driven by the choice of 
predictor years. There was much higher variability among 
rows in vineyard 1 than in vineyard 2, although there was 
more consistency among rows in 2007 and 2009 than in 2008. 
The most precise predictions were for the 2007 crop when 
2009 data were used as the predictor and 2007 as predictor 
of 2009. As with the point estimates, because the mean yields 
of 2008 and 2009 bracketed those of 2007, the predictions 

Figure 4  Total yield for 10 vines estimated (Ye) from the change in trellis 
wire tension at berry lag phase (∆TL). (A) pooled data; (B) vineyard 1; (C) 
vineyard 2. Grey lines are 95% prediction intervals and the outer black 
lines are 95% confidence intervals. All models were significantly different 
from zero (p < 0.0001).

Figure 5  Total yield for 10 vines estimated (Ye) by the change in wire 
tension at lag phase (∆TL) with intercepts of the linear equations set to 
zero. (A) pooled data; (B) vineyard 1; (C) vineyard 2. Grey lines are 95% 
prediction intervals and the outer black lines are 95% confidence intervals. 
All models were significantly different from zero (p < 0.001).
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for vineyard 1 had relatively low error. However, 2009 alone 
was the best predictor of Ya in 2007 in vineyard 2. Both the 
largest errors (underestimates) and the largest bias resulted 
when 2008 was used as the sole predictor of the large-crop 
years. Conversely, high-crop years (2007, 2009) consistently 
overestimated Ya in the extremely low-crop year (2008). 

Discussion
Sensor sensitivity to wire length could be estimated be-

cause of the uniformity of the distributed fruit load, which 
allowed us to remove mass consecutively from vine pairs 
equidistant from the sensor. Under a uniformly distributed 
load, the strain is equal on either side of the sensor (Meg-
son 2005). The primary driver of the variability in ∆TH-∆TR 
among years was ∆TH, the initial condition at harvest. In other 
words, higher ∆TH, meaning higher fruit mass at harvest, 

produced a larger change in ∆T per unit mass removed. Thus, 
sensitivity with distance from the sensor decreased most rap-
idly in 2009. In that year, the grape crop across California 
was the second largest on record (NASS 2011, 2013). By con-
trast, the crop was exceptionally small in 2008 because of the 
widespread very late frost, including at our study site. Yield 
was among the five lowest in the past 30 years (NASS 2011, 
2013). In all years, yields in the experimental vineyards mir-
rored industry-wide trends.

Elastic materials, including steel trellis wire, deform lin-
early under load (Megson 2005). One might have expected a 
linear response to the sequential removal of the distributed 
load, but an ideal elastic response did not occur, as indicated 
by the curvilinear response of ∆TH-∆TR. However, the elastic 
modulus of the wire (minimum tensile strength 1380 MPa; 
nominal permanent elongation 2.5% [ASTM International 
2008]) was not the sole determinant of ∆TH-∆TR in the field; 
it is implicit that the trellis is far from an ideal free-wire 
system. One consideration in a trellis is that restrictions on 
the wire in the horizontal plane are non-uniform via vari-
ables like vine-to-vine variability in cordons and post-to-post 
variability in wire attachments. By comparison, in a simpler 
single-wire trellis (Tarara et al. 2004), load removal also was 
an exponential function of distance from the sensor when 
mass was removed sequentially, regardless of the order of re-
moval being nearest-to-farthest from the sensor, or vice versa. 
The ΔTR can be used to confirm that the physical system (i.e., 
trellis, trellis wire) did not store energy, and as a post-hoc 
indicator of the approximate time at which increases in shoot 
mass became negligible and fruit mass begins to dominate 
the system. In practice, particularly under deficit irrigation, a 
database of several years of measurements from the TTM sys-
tem would result in a family of curves from which one could 
estimate the time at which fruit mass begins to dominate wire 
tension. This would signal the time at which one could begin 
dynamic predictions. Those predictions would be adjusted as 
the current season’s ΔTd, or growth curve, diverged from the 
mean curve derived from the database. The low sensitivity 
of Ye to the analytically determined date of L means that in 
most years, there would be a margin of error for the timing 
of growers’ field sampling.

Table 2  Linear relationships (y = a +bx) between the change  
in tension at lag phase and yield, segregated by the number  

of vines in the input data set, which represent the distance from 
the trellis tension monitor. The vines were in pairs equidistant  

from the sensor.

Parameter Statistica

No. of 
vines a b R2 (%) RMSE CV (%)

Pooled 2 -15.8 0.16 80.6 9.93 23.7
4 -27.7 0.31 81.1 19.01 22.5
6 -39.9 0.46 82.2 27.37 21.4
8 -51.3 0.60 80.7 37.91 22.3

10 -63.1 0.75 82.2 44.77 21.2
Vineyard 1 2 -49.6 0.26 92.8 6.31 14.2

4 -82.0 0.48 93.5 11.96 12.2
6 -113.2 0.69 92.2 17.52 12.9
8 -141.6 0.89 88.7 27.73 15.4

10 -176.9 1.11 90.4 31.30 14.1
Vineyard 2 2 -9.3 0.13 91.6 6.59 16.7

4 -19.0 0.26 88.3 15.95 20.1
6 -28.8 0.40 89.4 22.83 19.0
8 -38.0 0.53 87.6 33.13 20.7

10 -44.2 0.66 88.2 39.91 19.8
aRMSE: root mean square error; CV: coefficient of variation.

Table 3  Observed yield (Ya; kg/10 vines) in 2007, 2008, and 2009, and estimated yield (Ye) in 2007, 2008, and 2009 from the change in 
trellis wire tension set at berry lag phase (∆TL), using the ratio between ∆TL in the current year to ∆TL in the predictor year(s) (n = 6).

Vineyard Statistic

Ya and Ye
a by year

2007 2008 2009

Ya

Ye

Ya

Ye

Ya

Ye

∆TL08 ∆TL09 ∆TL0809 ∆TL07 ∆TL09 ∆TL0709 ∆TL07 ∆TL08 ∆TL0708

1 Mean 248.6 233.7 275.3 262.5 102 104 127.8 116 320 284.2 276.7 285.5
SD 21.9 54.0 44.0 40.8 17.5 24.52 43.12 36.1 27.1 21.63 59.02 28.93

Error (%) -6.0 10.7 5.6 1.96 25.3 13.7 -11.2 -13.5 -10.8

2 Mean 238.3 145.2 234 194.1 61.5 139.9 137.1 137.8 310 315.4 161 262.2
SD 15.76 46.75 28.95 42.9 10.1 19.3 12.1 15.2 36.1 47.9 22.83 35.93

Error (%) -39.1 -1.8 -18.5 127.5 123.0 124 1.74 -49.8 -15.4
aYe = yield estimated from trellis tension monitor output of the change in wire tension (∆T) at berry lag phase (∆TL) from 2007 (∆TL07), from 
2008 (∆TL08), from 2009 (∆TL09), from the mean of 2007 and 2008 (∆TL0708), from the mean of 2008 and 2009 (∆TL0809), or from the mean of 
2007 and 2009 (∆TL0709).
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Table 4  Mean precision, accuracy, and error of the dynamic estimation of yield from the change in tension in the trellis wire (∆T) in daily 
time steps (∆Td,i) over the estimation period (berry lag phase to harvest; n = 6).

Vineyard Statistic

Yield estimated by Year and ∆Td
a

2007 2008 2009
∆T08 ∆T09 ∆T0809 ∆T07 ∆T09 ∆T0709 ∆T07 ∆T08 ∆T0708

1 Bias -53.6 21 -2.1 30.2 41.1 36 -24.2 -89.4 -48
Variance 689.6 185.5 303.6 252.2 190.9 215.5 192.4 515.4 90.8
RMSE 65.1 28.5 24.7 37.6 45.5 41.6 31.2 95 49.8
CV (%) 26.2 11.5 9.9 36.7 44.4 40.1 9.8 29.7 15.6

2 Bias -110.7 2.8 -28.4 54.6 56.3 55.5 -3.5 -171.1 -64.7
Variance 210.3 10.9 38.66 148.2 162.4 155.4 17.2 355.5 101.7
RMSE 112.6 5.4 29.7 57.3 59.1 58.3 6.8 148.5 52.9
CV (%) 47.2 2.3 12.5 93.2 96.1 94.8 2.2 47.88 17.1

aYield estimated from the change in wire tension at day d (∆Td) in year i from 2007 (∆T07), from 2008 (∆T08), from 2009 (∆T09), from the mean 
of 2007 and 2008 (∆T0708), from the mean of 2008 and 2009 (∆T0809), or from the mean of 2007 and 2009 (∆T0709).

Figure 6  Dynamic estimation of yield (Ye) for 10 vines computed from the change in trellis wire tension (∆T) in daily time steps (∆Td). (A–C) vineyard 1; 
(D–F), vineyard 2. Numbers in parentheses are the predictor years. Because of year-to-year differences in yield, all vertical axes are scaled to a range 
of 200 kg. Vineyard 1 (cv. Merlot) was harvested 30 to 50 days after vineyard 2 (cv. Chardonnay). The horizontal line is Ya.
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The growth curve in 2008 was atypical in three respects. 
First, there was a temporal shift in ∆T0 such that there was 
little change in ∆Td (i.e., growth) between the delayed bud-
break and L. Second, sensor output indicated an uncharac-
teristically short L that could not be resolved analytically 
(Tarara et al. 2013). Third, the double sigmoid growth curve 
did not occur, making 2008 an unrealistic predictor year 
for “normal” years (i.e., 2007, 2009). There was a com-
pressed developmental scale caused by the interrupted or 
frost-induced 4 to 6 week reset of the growing season. This 
phenomenon is truly rare in the growing region. A year like 
2008 would be excluded from any database meant to allow 
the computation of average curves that bracket the current 
season’s curve for either a point estimate at L or for dynamic 
(i.e., daily) estimates from L to harvest. The regression ap-
proach to a point estimate would remain valuable in such 
an instance.

Traditional approaches to yield estimation in vineyards are 
based upon a single scalar to convert current cluster number 
and/or average mass to that anticipated at harvest (e.g., Wolfe 
2006). Our attempt to replicate this system by estimating 
yield from ΔTL without an intercept for the linear equation 
did not fit the data as well as the relationships that included 
an intercept. It is important to note that the zero-intercepts 
of these models are statistical fits; they do not have physical 
meaning because ΔTL is never zero. The advantage of the 
TTM is that such relationships (Ye from ΔTL) can be com-
puted from data collected remotely and automatically, rather 
than manually, and the relationships can be vineyard-specific. 
Therefore, a grower is not limited to a single scalar and thus 
may achieve a yield prediction by vineyard with less error 
than current practice allows. With the exception of vineyard 
2 in 2008, the errors found were within a reasonable range 
compared to aggregate estimates in the industry, and well be-
low some reported vineyard-specific errors (Blom and Tarara 
2009, Clingeleffer et al. 2001). The linear relationships are 
straightforward and can be computed from a few years of 
data where yields vary. 

It appears that fewer years are required to use the static 
regression-based approach at L than by fixing ∆Td to its value 
at L and computing Ye from Equation 3, because lower er-
rors were found with the regression models. During the ini-
tial years of measuring tension in the trellis wire, a grower 
would be collecting a series of curves to use for both static 
and dynamic estimates. Estimates from fixing ∆Td at L would 
become more robust (accuracy and bias improved) as the da-
tabase expanded. 

For dynamic estimates, extreme values of ∆Td or Ye ap-
pear to produce excessive bias by skewing the estimate. From 
several years’ curves, a mean (i.e., ∆Td and Ye values) would 
be computed to produce an estimator. For daily estimates, 
there would need to be at least one year of symmetry in the 
growth curve, in other words, curves that are evaluated peri-
odically for parallel behavior. The time at which reliable yield 
estimates begin could be adjusted by selecting curves with 
parallel behavior. This is a limitation in the initial use of the 
method. As in industry, the more years that are available for 

comparison, the higher the likelihood of selecting meaning-
ful curves.

Consistent bias and precision across the estimation period 
indicate symmetry in growth, illustrated throughout the pre-
diction interval in vineyard 2. In practice, precision can be 
improved by installing the TTMs among the most uniform 
vines possible. Bias can be reduced and more importantly, 
accuracy can be improved with the collection of a larger da-
tabase of ∆T curves from which one could compute a mean 
of years. Post-hoc analyses showed that from the ratio ap-
proach (Equation 3), L may be the earliest useful estimate of 
yield. Dynamic estimates became consistent over time by a 
number of weeks before harvest. The mean errors over the 
estimation period were lower than those of point estimates 
at L, consistent with previous work (Blom and Tarara 2009). 
Nonetheless, the power of a dynamic prediction is not for 
point estimates at L per se, but for a daily estimate between 
L and harvest, which follows relative changes in crop growth 
during ripening. 

Conclusion
In the trellis system under study, which is widespread 

across the industry in the United States and elsewhere, the 
TTM appeared to have a spatial response to removal of uni-
formly distributed fruit load of up to ~24 m or ~12 m to 
either side of the sensor. Thus, with an average vine spacing 
for wine grapes, 8 to 10 vines may constitute a meaningful 
sample size for the TTM in such a cordon-wire-based trel-
lis. The tension in the main loadbearing wire of this trellis 
can be used to estimate local yield of grapevines. Vineyard-
specific models fit the data better than pooled models, ad-
dressing concern about bulk versus vineyard-specific yield 
estimates, where vineyard specificity is important to harvest 
logistics. Dynamic and static approaches to yield estimation 
are feasible. At the developmental stage that traditionally is 
used by growers to estimate yield from hand sampling, the lag 
phase, the change in wire tension could be used to estimate 
fruit mass at harvest with acceptable accuracy.  Dynamic 
estimation of yield after L provides data that are not available 
by current means, and would provide growers and wineries 
with updates of yield estimates that are not now practical. Ad-
ditional work is warranted on the spatial distribution of TTM 
installations within a single vineyard for the most meaningful 
sampling design. This is not unique to the TTM, as the same 
question must be posed for hand sampling.
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